Jump to ContentJump to Main Navigation
Thermodynamics and Kinetics in Materials ScienceA Short Course$
Users without a subscription are not able to see the full content.

Boris S. Bokstein, Mikhail I. Mendelev, and David J. Srolovitz

Print publication date: 2005

Print ISBN-13: 9780198528036

Published to Oxford Scholarship Online:

DOI: 10.1093/oso/9780198528036.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 17 June 2021

Introduction to Statistical thermodynamics of condensed matter

Introduction to Statistical thermodynamics of condensed matter

(p.230) 13 Introduction to Statistical thermodynamics of condensed matter
Thermodynamics and Kinetics in Materials Science

Boris S. Bokstein

Mikhail I. Mendelev

David J. Srolovitz

Oxford University Press

In this Chapter we apply statistical thermodynamics to condensed matter. We start with a description of the structure of liquids and the relation between this structure and its thermodynamic properties. Taking the low density limit, we derive a general equation of state appropriate for both liquids and gases. Next, we turn to a statistical thermodynamic description of solids. Finally, we consider the statistical theory of solutions. Recall that interactions between molecules in an ideal gas can be ignored for the purpose of determining thermodynamic properties. Therefore, we can assume that the spatial position of a molecule is independent of the positions of all of the other molecules in the gas. In real gases under high pressure and, even more so, in condensed matter, the intermolecular interactions play an important role and the positions of molecules are not independent. In other words, intermolecular interactions lead to the formation of correlations in the location of the molecules or, equivalently, to the development of structure. The energy of the system and the other thermodynamic properties depend on this structure. Therefore, we now turn to a discussion of structure. There are two distinct approaches to this problem. The first approach is designed for crystalline materials and is based upon a description of crystal symmetry. The description of this method is outside the scope of this text. The second is based upon the introduction of probability functions for atom locations and is applicable to disordered systems such as dense gases, liquids, and amorphous solids. Consider, as we are apt to do, the ideal gas. In this case, the probability of finding s molecules at points r1, r2, . . . , rs is simply In contrast with the ideal gas, the positions of molecules in high density gases or condensed matter are not independent of each other. Therefore, we write where Fs(r1, . . . , rs) is called the s-particle correlation function. Note three obvious properties of such functions. First, the system does not change when we exchange two molecules. This implies that the correlation functions should be symmetric with respect to their arguments.

Keywords:   Born–Green–Bogoliubov equation, configuration integral, fugacity, ionic strength, pair correlation function, s-particle correlation function

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .