Jump to ContentJump to Main Navigation
Chemical Dynamics in Condensed PhasesRelaxation, Transfer and Reactions in Condensed Molecular Systems$
Users without a subscription are not able to see the full content.

Abraham Nitzan

Print publication date: 2006

Print ISBN-13: 9780198529798

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198529798.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 17 January 2022

Introduction To Quantum Relaxation Processes

Introduction To Quantum Relaxation Processes

Chapter:
(p.304) 9 Introduction To Quantum Relaxation Processes
Source:
Chemical Dynamics in Condensed Phases
Author(s):

Abraham Nitzan

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198529798.003.0015

The first question to ask about the phenomenon of relaxation is why it occurs at all. Both the Newton and the Schrödinger equations are symmetrical under time reversal: The Newton equation, dx/dt = v ; dv/dt = −∂V/∂x, implies that particles obeying this law of motion will retrace their trajectory back in time after changing the sign of both the time t and the particle velocities v. The Schrödinger equation, ∂ψ/∂t = −(i/.h) Ĥ ψ, implies that if (ψ (t) is a solution then ψ *(−t) is also one, so that observables which depend on |ψ|2 are symmetric in time. On the other hand, nature clearly evolves asymmetrically as asserted by the second law of thermodynamics. How does this asymmetry arise in a system that obeys temporal symmetry in its time evolution? Readers with background in thermodynamics and statistical mechanics have encountered the intuitive answer: Irreversibility in a system with many degrees of freedom is essentially a manifestation of the system “getting lost in phase space”:Asystem starts from a given state and evolves in time. If the number of accessible states is huge, the probability that the system will find its way back to the initial state in finite time is vanishingly small, so that an observer who monitors properties associated with the initial state will see an irreversible evolution. The question is how is this irreversible behavior manifested through the reversible equations of motion, and how does it show in the quantitative description of the time evolution. This chapter provides an introduction to this subject using the time-dependent Schrödinger equation as a starting point. Chapter 10 discusses more advanced aspects of this problem within the framework of the quantum Liouville equation and the density operator formalism.

Keywords:   Dyson identities, Green function, Langevin equation, absorption lineshape, boson operator formalism, coupling density, doorway state, molecular heat baths, nonstationary state, projection operators

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .