Jump to ContentJump to Main Navigation
Chemical Dynamics in Condensed PhasesRelaxation, Transfer and Reactions in Condensed Molecular Systems$
Users without a subscription are not able to see the full content.

Abraham Nitzan

Print publication date: 2006

Print ISBN-13: 9780198529798

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198529798.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 05 December 2021

Solvation Dynamics

Solvation Dynamics

(p.536) 15 Solvation Dynamics
Chemical Dynamics in Condensed Phases

Abraham Nitzan

Oxford University Press

Solvent dynamical effects on relaxation and reaction process were considered in Chapters 13 and 14. These effects are usually associated with small amplitude solvent motions that do not appreciably change its configuration. However, the most important solvent effect is often equilibrium in nature—modifying the free energies of the reactants, products, and transition states, thereby affecting the free energy of activation and sometime even the course of the chemical process. Solvation energies relevant to these modifications can be studied experimentally by calorimetric and spectroscopic methods, and theoretically by methods of equilibrium statistical mechanics. With advances of experimental techniques that made it possible to observe timescales down to the femtosecond regime, the dynamics of solvation itself became accessible and therefore an interesting subject of study. Moreover, we are now able to probe molecular processes that occur on the same timescale as solvation, making it necessary to address solvation as dynamic in addition to energetic phenomenon. This chapter focuses on the important and most studied subclass of these phenomena—solvation dynamics involving charged and polar solutes in dielectric environments. In addition to their intrinsic importance, these phenomena play a central role in all processes involving molecular charge rearrangement, most profoundly in electron transfer processes that are discussed in the next chapter. Consider, as a particular example, a neutral (q = 0) atomic solute embedded in a dielectric solvent, that undergoes a sudden change of its charge to q = e, where e is the magnitude of the electron charge. This can be achieved, for example, by photoionization. The dipolar solvent molecules respond to this change in the local charge distribution by rotating in order to make their negative end point, on the average, to the just formed positive ion. Thus, the solvent configuration changes in response to the sudden change in a local charge distribution. The driving force for this change is the lowering of overall free energy that accompanies the buildup of solvent polarization.

Keywords:   Debye model, dielectric relaxation, linear response theory, polaron, solvation function, vertical ionization potential

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .