Jump to ContentJump to Main Navigation
Chemical Dynamics in Condensed PhasesRelaxation, Transfer and Reactions in Condensed Molecular Systems$
Users without a subscription are not able to see the full content.

Abraham Nitzan

Print publication date: 2006

Print ISBN-13: 9780198529798

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198529798.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 03 March 2021

Quantum Dynamics Using The Time-Dependent Schrödinger Equation

Quantum Dynamics Using The Time-Dependent Schrödinger Equation

Chapter:
2 Quantum Dynamics Using The Time-Dependent Schrödinger Equation
Source:
Chemical Dynamics in Condensed Phases
Author(s):

Abraham Nitzan

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198529798.003.0007

This chapter focuses on the time-dependent Schrödinger equation and its solutions for several prototype systems. It provides the basis for discussing and understanding quantum dynamics in condensed phases, however, a full picture can be obtained only by including also dynamical processes that destroy the quantum mechanical phase. Such a full description of quantum dynamics cannot be handled by the Schrödinger equation alone; a more general approach based on the quantum Liouville equation is needed. This important part of the theory of quantum dynamics is discussed in Chapter 10. Given a system characterized by a Hamiltonian Ĥ , the time-dependent Schrödinger equation is For a closed, isolated system Ĥ is time independent; time dependence in the Hamiltonian enters via effect of time-dependent external forces. Here we focus on the earlier case. Equation (1) is a first-order linear differential equation that can be solved as an initial value problem.

Keywords:   Franck–Condon factors, Green function, Hartree approximation, Rabi frequency, Schrödinger representation, coupling elements, number operator, probability flux, reaction rate, screening

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .