Jump to ContentJump to Main Navigation
Computational Text Analysisfor functional genomics and bioinformatics$
Users without a subscription are not able to see the full content.

Soumya Raychaudhuri

Print publication date: 2006

Print ISBN-13: 9780198567400

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198567400.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 19 June 2021

Conclusion

Conclusion

Chapter:
11 (p.271) Conclusion
Source:
Computational Text Analysis
Author(s):

Soumya Raychaudhuri

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198567400.003.0018

The genomics era has presented many new high throughput experimental modalities that are capable of producing large amounts of data on comprehensive sets of genes. In time there will certainly be many more new techniques that explore new avenues in biology. In any case, textual analysis will be an important aspect of the analysis. The body of the peer-reviewed scientific text represents all of our accomplishments in biology, and it plays a critical role in hypothesizing and interpreting any data set. To altogether ignore it is tantamount to reinventing the wheel with each analysis. The volume of relevant literature approaches proportions where it is all but impossible to manually search through all of it. Instead we must often rely on automated text mining methods to access the literature efficiently and effectively. The methods we present in this book provide an introduction to the avenues that one can employ to include text in a meaningful way in the analysis of these functional genomics data sets. They serve as a complement to the statistical methods such as classification and clustering that are commonly employed to analyze data sets. We are hopeful that this book will serve to encourage the reader to utilize and further develop text mining in their own analyses.

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .