Jump to ContentJump to Main Navigation
Ecology of Marine SedimentsFrom Science to Management$
Users without a subscription are not able to see the full content.

John S. Gray and Michael Elliott

Print publication date: 2009

Print ISBN-13: 9780198569015

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198569015.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 20 June 2021



(p.1) Introduction
Ecology of Marine Sediments

John S. Gray

Michael Elliott

Oxford University Press

As the oceans cover 70% of the earth’s surface, marine sediments constitute the second largest habitat on earth, after the ocean water column, and yet we still know more about the dark side of the moon than about the biota of this vast habitat. The primary aim of this book is to give an overview of the biota of marine sediments from an ecological perspective—we will talk of the benthos, literally the plants and animals at the bottom of the sea, but we will also use the term to include those organisms living on the intertidal sediments, the sands and muds of the shore. Given that most of that area is below the zone where light penetrates, the photic zone, the area is dominated by the animals and so we will concentrate on this component. Many of the early studies of marine sediments were taxonomic, describing new species. One of the pioneers was Carl von Linnaeus (1707–1778), the great Swedish biologist who developed the Linnaean classification system for organisms that is still used today (but under threat from some molecular biologists who argue that the Linnaean system is outdated and propose a new system called Phylocode). Linnaeus described hundreds of marine species, many of which come from marine sediments. The British marine biologist Edward Forbes was a pioneer who invented the dredge to sample marine animals that lived below the tidemarks. Forbes showed that there were fewer species as the sampled depth increased and believed that the great pressures at depths meant that no animals would be found deeper than 600 m. This was disproved by Michael Sars who in 1869 used a dredge to sample the benthos at 600 m depth off the Lofoten islands in Norway. Sars found 335 species and in fact was the first to show that the deep sea (off the continental shelf) had high numbers of species. Following these pioneering studies, one of the earliest systematic studies of marine sediments was the HMS Challenger expedition of 1872–1876, the first global expedition. The reports of the expedition were extensive but were mostly descriptive, relating to taxonomy and general natural history.

Keywords:   barnacles, beaches, benthos, biomass, biota, bioturbation, corers, crustaceans, decapods, deep sea, ecology, ecosystems, environmental factors, environmental impact assessments (EIAs), fauna, fish, fishing, flora, gravels, habitats, hydrographics, larvae, lugworms, macrofauna, microfauna, nematodes, niche theory, nutrients, oil industry, pollution, rocky shores

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .