Jump to ContentJump to Main Navigation
Ecology of Marine SedimentsFrom Science to Management$
Users without a subscription are not able to see the full content.

John S. Gray and Michael Elliott

Print publication date: 2009

Print ISBN-13: 9780198569015

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198569015.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 20 June 2021

The Sediment and Related Environmental Factors

The Sediment and Related Environmental Factors

(p.22) Chapter 2 The Sediment and Related Environmental Factors
Ecology of Marine Sediments

John S. Gray

Michael Elliott

Oxford University Press

Our next major question is, how can we characterize the sediment as a habitat for biota? Marine sediments range from coarse gravels in areas subjected to much wave and current action, to muds typical of low-energy estuarine areas and to fine silts and clays in deep-sea sediments. The settling velocity of those particles and the ability of any particle to be re-suspended, moved, and redeposited depends on the prevailing hydrographic regime (e.g. see Open University 2002). The latter will in turn influence the transport of a species´ dispersal stages, especially larvae which will then be allowed to settle following metamorphosis under the appropriate hydrographic conditions (defined as hydrographic concentration). Hence the presence of fine sediments will indicate the depositing/accreting areas which may also be suitable for passively settling organisms. Clearly the particle size is of major importance in characterizing sediments, although sediments can also be categorized by their origin (fluvial, biogenic, cosmogenic, etc.) and their material (quartz, carbonates, clays, etc.) (Open University 2002). On a typical sandy beach the coarsest particles lie at the top of the beach and grade down to the finest sediments at the waterline. The top of the beach is dry and there is much windblown sand, since coarse sands drain rapidly, whereas at the lower end of the beach the sediments are wet, with frequent standing pools. Coarse sediment is found at the top of the shore because as the waves break on the beach the heaviest particles sediment out first. Finer particles remain in suspension longer and are carried seaward on the wave backwash. Beaches change their slope over the seasons, being steeper in winter and shallower in summer. A greater degree of wave energy will produce steeper beaches, as particles are pushed up the beach and so may be stored there, whereas gentle waves produce shallow, sloping beaches. Waves hitting the shore obliquely will create sediment movement as longshore drift. Subtidally, waves are important in distributing and affecting sediments down to depths of 100 m, but the effect decreases exponentially with depth and so the dominant subtidal influences on sediment transport are currents.

Keywords:   algae, bacteria, beaches, biomass, biotic interactions, bioturbation, bivalves, burrowing species, carbon, carbon isotopes, currents, cyanobacteria, hydrography, intertidal beaches, intertidal sediments, larvae, light, niche theory, nutrients, photosynthesis, physicochemical systems, phytoplankton, polychaetes, redox potential, roughness velocity, sediment particles, threshold velocity, tubeworms, waves

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .