Jump to ContentJump to Main Navigation
Processes in Microbial Ecology$
Users without a subscription are not able to see the full content.

David L. Kirchman

Print publication date: 2018

Print ISBN-13: 9780198789406

Published to Oxford Scholarship Online: August 2018

DOI: 10.1093/oso/9780198789406.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 27 November 2021

The nitrogen cycle

The nitrogen cycle

Chapter:
(p.217) Chapter 12 The nitrogen cycle
Source:
Processes in Microbial Ecology
Author(s):

David L. Kirchman

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198789406.003.0012

Nitrogen is required for the biosynthesis of many cellular components and can take on many oxidation states, ranging from −3 to +5. Consequently, nitrogen compounds can act as either electron donors (chemolithotrophy) or electron acceptors (anaerobic respiration). The nitrogen cycle starts with nitrogen fixation, the reduction of nitrogen gas to ammonium. Nitrogen fixation is carried out only by prokaryotes, mainly some cyanobacteria and heterotrophic bacteria. The ammonium resulting from nitrogen fixation is quickly used by many organisms for biosynthesis, being preferred over nitrate as a nitrogen source. It is also oxidized aerobically by chemolithoautotrophic bacteria and archaea during the first step of nitrification. The second step, nitrite oxidation, is carried out by other bacteria not involved in ammonia oxidation, resulting in the formation of nitrate. Some bacteria are capable of carrying out both steps (“comammox”). This nitrate can then be reduced to nitrogen gas or nitrous oxide during denitrification. It can be reduced to ammonium, a process called “dissimilatory nitrate reduction to ammonium.” Nitrogen gas is also released by anaerobic oxidation of ammonium (“anammox”) which is carried out by bacteria in the Planctomycetes phylum. The theoretical contribution of anammox to total nitrogen gas release is 29%, but the actual contribution varies greatly. Another gas in the nitrogen cycle, nitrous oxide, is a greenhouse gas produced by ammonia-oxidizing bacteria and archaea. The available data indicate that the global nitrogen cycle is in balance, with losses from nitrogen gas production equaling gains via nitrogen fixation. But excess nitrogen from fertilizers is contributing to local imbalances and several environmental problems in drinking waters, reservoirs, lakes, and coastal oceans.

Keywords:   Nitrogenase, nifH, heterocysts, diazotrophs, ammonium assimilation, ammonium regeneration, nitrite oxidation, DNRA, Nitrospira

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .