Spatial-temporal transmission dynamics and control of infectious diseases: Ebola virus disease (EVD) as a case study
Spatial-temporal transmission dynamics and control of infectious diseases: Ebola virus disease (EVD) as a case study
Disentangling the spatial-temporal dynamics of infectious disease transmission is important to address issues of disease persistence, epidemic growth and optimal control. In this chapter, we review key concepts relating to the spatial-temporal dynamics of infectious diseases in meta-populations, whereby geographically separate subpopulations are connected by migration or mobility rates. We review the dynamics of colonization, persistence and extinction of emerging and recurrent pathogens in meta-populations; the role of demographic and environmental factors; and geographic heterogeneity in epidemic growth rate. We illustrate theoretical concepts by reviewing the spatial dynamics of childhood diseases and other acute infections in low- and middle-income countries, and provide a detailed description of the spatial-temporal dynamics of the 2014–16 Ebola epidemic in West Africa. We further discuss how increased availability of empirical data and recent methodological developments provide a deeper mechanistic understanding of transmission processes in space and time, and make recommendations for future work.
Keywords: Spatial-temporal dynamics, population mobility, metapopulation, Ebola, gravity model, disease persistence, source-sink model, critical community size, epidemic growth scaling, reproduction number
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .