Jump to ContentJump to Main Navigation
Computer Simulation of LiquidsSecond Edition$
Users without a subscription are not able to see the full content.

Michael P. Allen and Dominic J. Tildesley

Print publication date: 2017

Print ISBN-13: 9780198803195

Published to Oxford Scholarship Online: November 2017

DOI: 10.1093/oso/9780198803195.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 26 October 2020

Molecular dynamics

Molecular dynamics

(p.95) 3 Molecular dynamics
Computer Simulation of Liquids

Michael P. Allen

Dominic J. Tildesley

Oxford University Press

This chapter introduces the classical equations of motion for a system of molecules, and describes their solution by stable, accurate, time-stepping algorithms. Simple atomic systems, rigid molecules, and flexible molecules with and without constraints, are treated, with examples of program code. Quaternions are introduced as useful parameters for solving the rigid-body equations of motion of molecules. A simple example of a multiple timestep algorithm is given, and there is a brief summary of event-driven (hard-particle) dynamics. Examples of constant-temperature molecular dynamics using stochastic and deterministic methods are presented, and the corresponding constant-pressure molecular dynamics methods for fixed and variable box-shape are described. The molecular dynamics method is extended to the treatment of polarizable systems, and dynamical simulation of the grand canonical ensemble is mentioned.

Keywords:   Molecular-dynamics, symplectic-algorithm, constant-temperature, constant-pressure, multiple-timestep, constraints, quaternions, flexible-molecules

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .