Jump to ContentJump to Main Navigation
Fluid MechanicsA Geometrical Point of View$
Users without a subscription are not able to see the full content.

S. G. Rajeev

Print publication date: 2018

Print ISBN-13: 9780198805021

Published to Oxford Scholarship Online: October 2018

DOI: 10.1093/oso/9780198805021.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 18 September 2020

Geometric Integrators

Geometric Integrators

(p.203) 15 Geometric Integrators
Fluid Mechanics

S. G. Rajeev

Oxford University Press

Generic methods for solving ordinary differential equations (ODEs, e.g., Runge-Kutta) can break the symmetries that a particular equation might have. Lie theory can be used to get Geometric Integrators that respect these symmetries. Extending thesemethods to Euler and Navier-Stokes is an outstanding research problem in fluid mechanics. Therefore, a short review of geometric integrators for ODEs is given in this last chapter. Exponential coordinates on a Lie group are explained; the formula for differentiating a matrix exponential is given and used to derive the first few terms of the Magnus expansion. Geometric integrators corresponding to the Euler and trapezoidal methods for ODEs are given.

Keywords:   Lie theory, Magnus expansion, geometric integrator, Euler method, trapezoidal rule

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .