Jump to ContentJump to Main Navigation
The AI Delusion$
Users without a subscription are not able to see the full content.

Gary Smith

Print publication date: 2018

Print ISBN-13: 9780198824305

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198824305.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 24 October 2021

The Kitchen Sink

The Kitchen Sink

Chapter:
(p.119) chapter 7 The Kitchen Sink
Source:
The AI Delusion
Author(s):

Gary Smith

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198824305.003.0009

Back in the 1980s, I talked to an economics professor who made forecasts for a large bank based on simple correlations like the one in Figure 1. If he wanted to forecast consumer spending, he made a scatter plot of income and spending and used a transparent ruler to draw a line that seemed to fit the data. If the scatter looked like Figure 1, then when income went up, he predicted that spending would go up. The problem with his simple scatter plots is that the world is not simple. Income affects spending, but so does wealth. What if this professor happened to draw his scatter plot using data from a historical period in which income rose (increasing spending) but the stock market crashed (reducing spending) and the wealth effect was more powerful than the income effect, so that spending declined, as in Figure 2? The professor’s scatter plot of spending and income will indicate that an increase in income reduces spending. Then, when he tries to forecast spending for a period when income and wealth both increase, his prediction of a decline in spending will be disastrously wrong. Multiple regression to the rescue. Multiple regression models have multiple explanatory variables. For example, a model of consumer spending might be: C = a + bY + cW where C is consumer spending, Y is household income, and W is wealth. The order in which the explanatory variables are listed does not matter. What does matter is which variables are included in the model and which are left out. A large part of the art of regression analysis is choosing explanatory variables that are important and ignoring those that are unimportant. The coefficient b measures the effect on spending of an increase in income, holding wealth constant, and c measures the effect on spending of an increase in wealth, holding income constant. The math for estimating these coefficients is complicated but the principle is simple: choose the estimates that give the best predictions of consumer spending for the data used to estimate the model. In Chapter 4, we saw that spurious correlations can appear when we compare variables like spending, income, and wealth that all tend to increase over time.

Keywords:   consumer spending, kitchen sink approach, nonlinear models, presidential elections, predicting

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .