Jump to ContentJump to Main Navigation
Functional Gaussian Approximation for Dependent Structures$
Users without a subscription are not able to see the full content.

Florence Merlevède, Magda Peligrad, and Sergey Utev

Print publication date: 2019

Print ISBN-13: 9780198826941

Published to Oxford Scholarship Online: April 2019

DOI: 10.1093/oso/9780198826941.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 24 November 2020

Linear Processes

Linear Processes

(p.345) 12 Linear Processes
Functional Gaussian Approximation for Dependent Structures

Florence Merlevède

Magda Peligrad

Sergey Utev

Oxford University Press

Here we apply different methods to establish the Gaussian approximation to linear statistics of a stationary sequence, including stationary linear processes, near-stationary processes, and discrete Fourier transforms of a strictly stationary process. More precisely, we analyze the asymptotic behavior of the partial sums associated with a short-memory linear process and prove, in particular, that if a weak limit theorem holds for the partial sums of the innovations then a related result holds for the partial sums of the linear process itself. We then move to linear processes with long memory and obtain the CLT under various dependence structures for the innovations by analyzing the asymptotic behavior of linear statistics. We also deal with the invariance principle for causal linear processes or for linear statistics with weakly associated innovations. The last section deals with discrete Fourier transforms, proving, via martingale approximation, central limit behavior at almost all frequencies under almost no condition except a regularity assumption.

Keywords:   linear statistics, linear processes, short memory, long memory, discrete Fourier transform

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .