Jump to ContentJump to Main Navigation
Functional Gaussian Approximation for Dependent Structures$
Users without a subscription are not able to see the full content.

Florence Merlevède, Magda Peligrad, and Sergey Utev

Print publication date: 2019

Print ISBN-13: 9780198826941

Published to Oxford Scholarship Online: April 2019

DOI: 10.1093/oso/9780198826941.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 24 November 2020

Random Walk in Random Scenery

Random Walk in Random Scenery

(p.382) 13 Random Walk in Random Scenery
Functional Gaussian Approximation for Dependent Structures

Florence Merlevède

Magda Peligrad

Sergey Utev

Oxford University Press

In this chapter we investigate the question of central limit behavior and its functional form for the partial sums associated with a centered L2-stationary sequence of real-valued random variables (usually called the random scenery) sampled by a recurrent one-dimensional strongly aperiodic random walk. This question is handled under various conditions dependent on the random scenery. In particular, we assume that the random scenery either satisfies an asymptotic negative dependence condition, or is a function of a determinantal process and a Gaussian sequence, or satisfies a mild projective criterion. We first show that study of central limit behavior for such random walks in random scenery can be handled with results related to linear statistics developed in Chapter 12, provided the random walk has good properties. We then look extensively at the properties of a recurrent one-dimensional strongly aperiodic random walk. The functional form of the central limit theorem is also investigated.

Keywords:   central limit theorem, random walk, strong aperiodicity, recurrence, functional central limit theorem

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .