Jump to ContentJump to Main Navigation
Functional Gaussian Approximation for Dependent Structures$
Users without a subscription are not able to see the full content.

Florence Merlevède, Magda Peligrad, and Sergey Utev

Print publication date: 2019

Print ISBN-13: 9780198826941

Published to Oxford Scholarship Online: April 2019

DOI: 10.1093/oso/9780198826941.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 28 October 2020

Gaussian Approximation under Asymptotic Negative Dependence

Gaussian Approximation under Asymptotic Negative Dependence

Chapter:
(p.277) 9 Gaussian Approximation under Asymptotic Negative Dependence
Source:
Functional Gaussian Approximation for Dependent Structures
Author(s):

Florence Merlevède

Magda Peligrad

Sergey Utev

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198826941.003.0009

Here we introduce the notion of asymptotic weakly associated dependence conditions, the practical applications of which will be discussed in the next chapter. The theoretical importance of this class of random variables is that it leads to the functional CLT without the need to estimate rates of convergence of mixing coefficients. More precisely, because of the maximal moment inequalities established in the previous chapter, we are able to prove tightness for a stochastic process constructed from a negatively dependent sequence. Furthermore, we establish the convergence of the partial sums process, either to a Gaussian process with independent increments or to a diffusion process with deterministic time-varying volatility. We also provide the multivariate form of these functional limit theorems. The results are presented in the non-stationary setting, by imposing Lindeberg’s condition. Finally, we give the stationary form of our results for both asymptotic positively and negatively associated sequences of random variables.

Keywords:   tightness, Gaussian process, independent increments, diffusion process, central limit theorem, functional central limit theorem

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .