Jump to ContentJump to Main Navigation
Principles of Materials Characterization and Metrology$
Users without a subscription are not able to see the full content.

Kannan M. Krishnan

Print publication date: 2021

Print ISBN-13: 9780198830252

Published to Oxford Scholarship Online: July 2021

DOI: 10.1093/oso/9780198830252.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 22 January 2022

Probes: Sources and Their Interactions with Matter

Probes: Sources and Their Interactions with Matter

Chapter:
(p.277) 5 Probes: Sources and Their Interactions with Matter
Source:
Principles of Materials Characterization and Metrology
Author(s):

Kannan M. Krishnan

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198830252.003.0005

Probes are generated using laboratory sources, or in large user facilities. Photon sources include incandescence and plasma discharge lamps. Electron beams are generated using thermionic or field-emission sources. RF plasma sources generate ions that are accelerated and used for scattering experiments. Specimens should be probed first with light, as it causes the least damage. Electron interaction with matter causes beam broadening, atomic displacements, sputtering, or radiolysis leading to mass loss and local contamination. Neutrons are heavier than electrons, penetrate more deeply in materials, and require more sample for analysis. Protons (positive charge, heavier than electrons) go a longer way in the specimen without significant broadening. Ions in solids undergo kinematic collisions with conservation of energy and momentum; they also lose energy continuously as they propagate. In the back-scattering geometry, they form important methods of Rutherford backscattering spectroscopy (RBS) and low-energy ion scattering spectroscopy (LEISS). Medium energy ions generate secondary ions by sputtering that can be analyzed by mass spectrometers to determine specimen composition (SIMS). Alternatively, its composition is analyzed (ICP-MS), by creating an aqueous dispersion and converting it to a plasma. Finally, interaction of high-energy ions with core electrons can lead to inner shell ionization and characteristic X-ray emission (PIXE).

Keywords:   Incandescence and arc lamps, Thermionic and field emission electron sources, RF plasma, Kinematic collision, Beam damage, Rutherford backscattering spectroscopy (RBS), Low-energy ion scattering spectroscopy (LEISS), Secondary ion mass spectroscopy (SIMS), Inductively coupled plasma mass spectrometry (ICP-MS), Particle induced X-ray emission (PIXE)

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .