Jump to ContentJump to Main Navigation
Principles of Materials Characterization and Metrology$
Users without a subscription are not able to see the full content.

Kannan M. Krishnan

Print publication date: 2021

Print ISBN-13: 9780198830252

Published to Oxford Scholarship Online: July 2021

DOI: 10.1093/oso/9780198830252.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 07 December 2021

Optics, Optical Methods, and Microscopy

Optics, Optical Methods, and Microscopy

Chapter:
(p.345) 6 Optics, Optical Methods, and Microscopy
Source:
Principles of Materials Characterization and Metrology
Author(s):

Kannan M. Krishnan

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198830252.003.0006

Propagation of light is described as the simple harmonic motion of transverse waves. Combining waves that propagate on orthogonal planes give rise to linear, elliptical, or spherical polarization, depending on their amplitudes and phase differences. Classical experiments of Huygens and Young demonstrated the principle of optical interference and diffraction. Generalization of Fraunhofer diffraction to scattering by a three-dimensional arrangement of atoms in crystals forms the basis of diffraction methods. Fresnel diffraction finds application in the design of zone plates for X-ray microscopy. Optical microscopy, with resolution given by the Rayleigh criterion to be approximately half the wavelength, works best when tailored to the optimal characteristics of the human eye (λ = 550 nm). Lenses suffer from spherical and chromatic aberrations, and astigmatism. Optical microscopes operate in bright-field, oblique, and dark-field imaging conditions, produce interference contrast, and can image with polarized light. Variants include confocal scanning optical microscopy (CSOM). Metallography, widely used to characterize microstructures, requires polished or chemically etched surfaces to provide optimal contrast. Finally, the polarization state of light reflected from the surface of a specimen is utilized in ellipsometry to obtain details of the optical properties and thickness of thin film materials.

Keywords:   Simple harmonic motion, Transverse waves, Polarization of light, Fraunhofer and Fresnel diffraction, Zone plates and X-ray microscopy, Rayleigh criterion of resolution, Optical microscopy, Confocal scanning optical microscopy, Metallography, Ellipsometry

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .