Jump to ContentJump to Main Navigation
Urban Evolutionary Biology$
Users without a subscription are not able to see the full content.

Marta Szulkin, Jason Munshi-South, and Anne Charmantier

Print publication date: 2020

Print ISBN-13: 9780198836841

Published to Oxford Scholarship Online: June 2020

DOI: 10.1093/oso/9780198836841.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 28 November 2021

Cognition and Adaptation to Urban Environments

Cognition and Adaptation to Urban Environments

(p.253) Chapter 15 Cognition and Adaptation to Urban Environments
Urban Evolutionary Biology

Daniel Sol

Oriol Lapiedra

Simon Ducatez

Oxford University Press

Urbanization is one of the most drastic alterations of natural habitats, causing sudden adaptive mismatches that make population persistence difficult for many organisms. Urban contexts may be challenging for adaptation, particularly for animals with long generation times with slow evolutionary responses. This chapter argues that cognition may play a major role in facilitating evolutionary adaptation of animals to the urban environment. By regulating how animals gather, preserve, and use information, cognition can influence adaptive evolution in urban areas by (1) allowing individuals to choose the habitats and resources that better match their phenotypes, and (2) helping animals to construct learned responses to challenges they have never or rarely experienced before. These cognitive processes can weaken the strength of selection. However, they can also facilitate adaptive evolution by reducing the risk of population extinction and by ensuring that individuals are more gradually exposed to the new conditions. In addition, cognitive processes can maintain genetic diversity for selection to act upon in the future as well as promoting local adaptation by reducing gene flow with nearby non-urban populations. Finally, learned behaviours can allow the population to move close to the realm of attraction of new adaptive peaks, driving evolution toward novel directions. Cognition itself may also evolve in urban areas—particularly in long-lived generalists—if it exhibits enough heritable variation. Echoing recent suggestions in cognitive ecology, the chapter highlights the need to design and carry out experiments explicitly designed to assess the evolutionary consequences of cognition in urban populations.

Keywords:   Cognitive buffer, adaptation to novel environments, ecological traps, phenotypic plasticity, Baldwin effect, behavioural innovation

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .