Jump to ContentJump to Main Navigation
Energy... beyond oil$
Users without a subscription are not able to see the full content.

Fraser Armstrong and Katherine Blundell

Print publication date: 2007

Print ISBN-13: 9780199209965

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199209965.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 16 January 2022

Photovoltaic and photoelectrochemical conversion of solar energy

Photovoltaic and photoelectrochemical conversion of solar energy

Chapter:
(p.120) 8 Photovoltaic and photoelectrochemical conversion of solar energy
Source:
Energy... beyond oil
Author(s):

Michael Grätzel

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199209965.003.0010

The Sun provides about 100,000 Terawatts (TW) to the Earth, which is approximately ten thousand times greater than the world’s present rate of energy consumption (14 TW). Photovoltaic (PV) cells are being used increasingly to tap into this huge resource and will play a key role in future sustainable energy systems. Indeed, our present needs could be met by covering 0.5% of the Earth’s surface with PV installations that achieve a conversion efficiency of 10%. Fig. 8.1 shows a simple diagram of how a conventional photovoltaic device works. The top and bottom layers are made of an n-doped and p-doped silicon, where the charge of the mobile carriers is negative (electrons) or positive (holes), respectively. The p-doped silicon is made by ‘doping’ traces of an electron-poor element such as gallium into pure silicon, whereas n-doped silicon is made by doping with an electron-rich element such as phosphorus. When the two materials contact each other spontaneous electron and hole transfer across the junction produces an excess positive charge on the side of the n-doped silicon (A) and an excess negative charge on the opposite p-doped (B) side. The resulting electric field plays a vital role in the photovoltaic energy conversion process. Absorption of sunlight generates electron-hole pairs by promoting electrons from the valence band to the conduction band of the silicon. Electrons are minority carriers in the p-type silicon while holes are minority carriers in the n-type material. Their lifetime is very short as they recombine within microseconds with the oppositely charged majority carriers. The electric field helps to collect the photo-induced carriers because it attracts the minority carriers across the junction as indicated by the arrows in Fig. 8.1, generating a net photocurrent. As there is no photocurrent flowing in the absence of a field, the maximum photo-voltage that can be attained by the device equals the potential difference that is set up in the dark at the p-n junction. For silicon this is about 0.7V. So far, solid-state junction devices based on crystalline or amorphous silicon (Si) have dominated photovoltaic solar energy converters, with 94% of the market share.

Keywords:   solar energy, solar concentrators (SCs), indium (In), quantum dots, solar concentrators (SCs), solar leaf, mesoscopic solar cells, selenium (Se)

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .