Jump to ContentJump to Main Navigation
Energy... beyond oil$
Users without a subscription are not able to see the full content.

Fraser Armstrong and Katherine Blundell

Print publication date: 2007

Print ISBN-13: 9780199209965

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199209965.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 16 January 2022

Fuel cells

Fuel cells

Chapter:
(p.169) 11 Fuel cells
Source:
Energy... beyond oil
Author(s):

David Jollie

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199209965.003.0013

The vision of a world without oil or other fossil fuels is both surreal and at the same time seductive as a solution to current concerns over climate change and oil availability. It is also, to some extents, an irrelevant one for fuel cells. Rather than being an energy source they provide a mechanism for transforming one form of energy (chemical) to another (typically electricity or heat). In this way, they resemble batteries, internal combustion engines, and even steam engines. The key to their value is really their efficiency: they are able to carry out this transformation cleanly and efficiently. Fuel cells are not yet fully developed. The technology and the fuel cell effect were discovered in 1839 by, depending on your point of view, William Grove or Christian Schoenbein (Sanstede et al., 2003). For a long time after this, the technology was essentially dormant until the 1940s when Francis Bacon started working on it and the 1950s when Allis-Chalmers built the first application of the technology (a fuel cell powered tractor). Research and development accelerated when fuel cells were chosen as power sources for space missions in the 1960s and the 1970s oil price shocks increased interest in other technologies, but the real impetus came in the 1990s when DaimlerChrysler examined the proton exchange membrane fuel cell and decided that it could be used to power a vehicle. Considerable effort is still to be expended on improving fuel cell technology in terms of cost and performance. Ancillary questions like the best method of fuelling and of carrying fuel still remain to be solved. However, we have begun to see fuel cells entering the commercial marketplace and the coming years and decades should see this accelerate. A simple definition of a fuel cell might be ‘a device that reacts a fuel and an oxidant, without combustion, producing heat and electricity’. The best-known case, that of a proton exchange membrane (PEM) fuel cell (PEMFC), is illustrated in Fig. 11.1. In a PEM fuel cell, the fuel is hydrogen, the oxidant is oxygen and the only chemical product is water, as described in reaction (1): . . . 2H2 + O2 ⇒ 2H2O + heat + electricity (11.1) . . .

Keywords:   Hypercar, air pollution, convergence devices, disruptive technology, fuel cells, hybrid vehicles, platinum

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .