Jump to ContentJump to Main Navigation
Energy... beyond oil$
Users without a subscription are not able to see the full content.

Fraser Armstrong and Katherine Blundell

Print publication date: 2007

Print ISBN-13: 9780199209965

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199209965.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 23 January 2022

Wave and tidal power

Wave and tidal power

Chapter:
(p.49) 4 Wave and tidal power
Source:
Energy... beyond oil
Author(s):

Dean L. Millar

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199209965.003.0006

This chapter reviews how electricity can be generated from waves and tides. The UK is an excellent example, as the British Isles have rich wave and tidal resources. The technologies for converting wave power into electricity are easily categorized by location type. 1. Shoreline schemes. Shoreline Wave Energy Converters (WECs) are installed permanently on shorelines, from where the electricity is easily transmitted and may even meet local demands. They operate most continuously in locations with a low tidal range. A disadvantage is that less power is available compared to nearshore resources because energy is lost as waves reach the shore. 2. Nearshore schemes. Nearshore WECs are normally floating structures needing seafloor anchoring or inertial reaction points. The advantages over shoreline WECs are that the energy resource is much larger because nearshore WECs can access long-wavelength waves with greater swell, and the tidal range can be much larger. However, the electricity must be transmitted to the shore, thus raising costs. 3. Offshore schemes. Offshore WECs are typically floating structures that usually rely on inertial reaction points. Tidal range effects are insignificant and there is full access to the incident wave energy resource. However, electricity transmission is even more costly. Tidal power technologies fall into two fundamental categories:1. Barrage schemes. In locations with high tidal range a dam is constructed that creates a basin to impound large volumes of water. Water flows in and out of the basin on flood and ebb tides respectively, passing though high efficiency turbines or sluices or both. The power derives from the potential energy difference in water levels either side of the dam. 2. Tidal current turbines. Tidal current turbines (also known as free flow turbines) harness the kinetic energy of water flowing in rivers, estuaries, and oceans. The physical principles are analogous to wind turbines, allowing for the very different density, viscosity, compressibility, and chemistry of water compared to air. Waves are caused by winds, which in the open ocean are often of gale force (speed >14 m/s).

Keywords:   Canada, Energetech, France, Gorlov Helical Turbine, Korea, Norway, Pelamis, SeaFlow, WaveDragon

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .