Jump to ContentJump to Main Navigation
The Physical Geography of Southeast Asia$
Users without a subscription are not able to see the full content.

Avijit Gupta

Print publication date: 2005

Print ISBN-13: 9780199248025

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199248025.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 02 December 2021

Hazards and Risks at Gunung Merapi,Central Java: A Case Study

Hazards and Risks at Gunung Merapi,Central Java: A Case Study

Chapter:
(p.275) 16 Hazards and Risks at Gunung Merapi,Central Java: A Case Study
Source:
The Physical Geography of Southeast Asia
Author(s):

Jean-Claude Thouret

Franck Lavigne

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199248025.003.0028

Of the 1.1 million people living on the flanks of the active Merapi volcano in Java (average population density: 1140 inhabitants per km2), 440 000 live in relatively high-risk areas prone to pyroclastic flows, surges, and lahars. The sixty-one reported eruptions since the mid-1500s killed about 7000 people. For the last two centuries the activity of Merapi has alternated regularly between long periods of lava dome extrusion and brief explosive episodes with dome collapse pyroclastic flows at eight- to fifteen-year intervals. Violent explosive episodes on an average recurrence of twenty-six to fifty-four years have generated pyroclastic flows, surges, tephra falls, and subsequent lahars. The current hazard zone map of Merapi (Pardyanto et al. 1978) portrays three areas, termed the forbidden zone, first danger zone, and second danger zone, based on progressively declining hazard intensity. Revision of the hazard map has been carried out because it lacked the details necessary to outline hazard zones with accuracy (in particular the valleys likely to be swept by lahars), and excluded some areas likely to be devastated by pyroclastic density currents, such as the 22 November 1994 surge. In addition, risk maps were developed in order to incorporate social, technical, and economic elements of vulnerability (Lavigne 1998, 2000) in the decision-making progress. Eruptive hazard assessment at Merapi is based on reconstructed eruptive history, based on eruptive behaviour and scenarios combined with existing models and preliminary numerical modelling (Thouret et al. 2000). The reconstructed past eruptive activity and related damage define the extent and frequency of pyroclastic flows, the most hazardous phenomenon (Camus et al. 2000; Newhall et al. 2000). Pyroclastic flows travelled as far as 9–15 km from the source, pyroclastic surges swept the flanks as far as 9–20 km away from the vent, thick tephra fall buried temples in the vicinity of Yogyakarta 25 km to the south, and subsequent lahars spilled down radial valleys as far as 30 km to the west and south. At least one large edifice collapse has occurred in the past 7000 years (Camus et al. 2000; Newhall et al. 2000).

Keywords:   dome collapse, fumarole, hazard zonation, kentongan, lava dome, pumice, risk, scoria, tuff, vulnerability

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .