Jump to ContentJump to Main Navigation
Big Questions in Ecology and Evolution$
Users without a subscription are not able to see the full content.

Thomas N. Sherratt and David M. Wilkinson

Print publication date: 2009

Print ISBN-13: 9780199548606

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199548606.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 02 March 2021

Is Nature Chaotic?

Is Nature Chaotic?

Chapter:
6 Is Nature Chaotic?
Source:
Big Questions in Ecology and Evolution
Author(s):

Thomas N. Sherratt

David M. Wilkinson

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199548606.003.0010

Centuries before King Harold of England famously received an arrow in the eye (AD 1066), Chinese officials in the T’ang dynasty (AD 618–907) began collecting annual reports on the abundance of migratory locusts. The primary aim of this initiative was to make sense of the changes over time (the dynamics) of this devastating agricultural pest, and thereby predict the timing and intensity of outbreaks. Now, despite a staggering 1,300 years of faithful recording, few patterns are evident and the data look decidedly messy. Irregular climatic fluctuations, particularly those involved in the drying up of grasslands on river deltas, may explain some of the variability. However, one might wonder whether some of this ‘messiness’ was internally driven, caused by some sort of ‘feedback’ arising within the dynamics themselves. Many long-term data sets on population dynamics have these extremely messy qualities, ranging from the daily number of damselfish reaching maturity on the Great Barrier Reef to the number of feral sheep on Scottish Islands, and it is important to know where it all comes from. The study of ‘chaos’ (easiest to define negatively as an absence of order, but we will get to a more formal definition later) has its roots in precisely the type of feedback processes referred to above, reflecting what mathematicians call ‘non-linearities’ (relationships that are not straight lines). Several mathematicians, most notably, the eminent French mathematician Henri Poincaré (1854–1912), had long noted that non-linear systems could generate some extremely unusual dynamics, such that the precise trajectory a system took was highly sensitive to the initial conditions. However, observations such as these were largely overlooked by ecologists until a new generation of researchers, notably Robert May (a physicist turned ecologist, now Lord May of Oxford), began toying with their own simple ecological models and appreciating that the behaviour of these models was not always simple. Until ecologists were made aware of the potential effects of non-linearities in the 1970s, the prevailing view was that complex dynamics must have complex causes.

Keywords:   attractor, bifurcations, carrying capacity, density-dependent feedback, extinctions, fecundity, group selection, measles, noise, phytoplankton

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .