Jump to ContentJump to Main Navigation
Principles of Thermal Ecology: Temperature, Energy, and Life$
Users without a subscription are not able to see the full content.

Andrew Clarke

Print publication date: 2017

Print ISBN-13: 9780199551668

Published to Oxford Scholarship Online: October 2017

DOI: 10.1093/oso/9780199551668.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use.date: 06 July 2022



(p.163) Chapter 8 Metabolism
Principles of Thermal Ecology: Temperature, Energy, and Life

Andrew Clarke

Oxford University Press

Metabolism is driven by redox reactions, in which part of the difference in potential energy between the electron donor and acceptor is used by the organism for its life processes (with the remainder being dissipated as heat). The key process is intermediary metabolism, by which the energy stored in reserves (glycogen, starch, lipid, protein) is transferred to ATP. In aerobic respiration the electrons released from reserves are passed to oxygen, which is thereby reduced to water. Not all ATP regeneration involves oxygen as the final electron acceptor, and not all oxygen is used for ATP regeneration, but oxygen consumption is often the simplest and most practical way to measure the rate of intermediary metabolism and the errors in doing so are believed to be small. The costs of existence, as estimated by resting metabolism, represent only a part (~ 25%) of the daily energy expenditure of organisms. The costs of the organism’s ecology (growth, reproduction, movement and so on) are additional to existence costs. Resting metabolic rate increases with cell temperature, indicating that it costs more energy to maintain a warm cell than it does a cool or cold cell. The temperature sensitivity of resting metabolism is highly conserved across organisms.

Keywords:   ATP, Cost of existence, Electron, Intermediary metabolism, Proton gradient, Oxygen consumption, Redox reaction, Respiration, Temperature

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .