Jump to ContentJump to Main Navigation
The Planet in a PebbleA journey into Earth's deep history$
Users without a subscription are not able to see the full content.

Jan Zalasiewicz

Print publication date: 2010

Print ISBN-13: 9780199569700

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199569700.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 21 June 2021

Gold!

Gold!

Chapter:
9 Gold!
Source:
The Planet in a Pebble
Author(s):

Jan Zalasiewicz

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199569700.003.0015

This is the beginning of the long goodbye to the surface realm. The flakes and grains of the pebble material are now in utter darkness (except perhaps for occasional flickers of phosphorescence from some of that microbial life), at the bottom of that deep, stagnant sea. The strata that we see in the pebble are a few centimetres thick. But now, of course, they are made of good, hard, respectable, tightly compressed rock. Back then, they made a layer of mud—waterlogged, sticky, slimy, and very likely evil-smelling mud—a quarter of a metre thick or more, that formed part of a layer on the sea floor that extended for tens of kilometres in every direction. Let us catch it at just this point in time, before it became buried by further influxes of sediment from those endless turbidity currents. The mud was full of life, particularly at the surface, most of which will have been occupied by those infinitely complex microscopic city-states that are microbial mats. But even below that, in the buried mud itself, there will have been considerable activity. In fact, as microbes are extremely good at clinging to life in all kinds of conditions, that activity was to carry on for quite some time yet. Those indefatigable microbes, though, still had to earn their keep. One way of doing that was by making use of the soft tissues of the fallen plankton, that were dismantled and recycled in the process that we call decay. Even in these anoxic conditions, where decay was slow, the magnificent, complex molecular architecture of body tissues was beginning to degrade, to transform into smaller, simpler molecules, leaving just the considerable inedible remnants that are the cases of the acritarchs and the chitinozoa, and the living quarters of the graptolites, upon which the microbes did not seem to manage to get much of a foothold (so to speak), even though they had decades and centuries in which to make the attempt. It is one thing to be occupied in this microscopic breaker’s yard, amid the wreckage of proteins, fats, and carbohydrates.

Keywords:   apatite, chitinozoans, diffusion, feldspar, gold, hydrogen sulphide, illite, methane

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .