Jump to ContentJump to Main Navigation
The Physics, Clinical Measurement and Equipment of Anaesthetic Practice for the FRCA$
Users without a subscription are not able to see the full content.

Patrick Magee and Mark Tooley

Print publication date: 2011

Print ISBN-13: 9780199595150

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199595150.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 12 June 2021

Monitoring Depth of Anaesthesia

Monitoring Depth of Anaesthesia

Chapter 19 Monitoring Depth of Anaesthesia
The Physics, Clinical Measurement and Equipment of Anaesthetic Practice for the FRCA

Patrick Magee

Mark Tooley

Oxford University Press

There are, and have been, many monitors designed to monitor depth of anaesthesia and to give an indication of awareness during surgery, which use electrical signals obtained from the human body. Some have been designed as just research devices, some have been available commercially, but have been withdrawn, and some are still available. Most, but not all, are based on the spontaneous EEG and the AER. Some have been designed to use properties of the ECG. Although useful, all of the discussed monitors have some shortcomings, and not all are 100% sensitive and specific to discriminate between consciousness and unconsciousness, and none correlate exactly with clinical states and levels of anaesthesia. The design of the commercial monitor, the Cerebral Function Monitor (CFM) was based on simple time domain measures already discussed [Maynard et al. 1969]. The CFM took the EEG from a single pair of parietal electrodes. The signal was amplified and passed through a band-pass filter and differentiator, which had the effect of accentuating the gain of the higher end of the 2–15 Hz pass band. The output of this specialised filter was integrated to produce a voltage output, which varied with time. It was plotted on a logarithmic scale. The trace on the paper gave an indication of the power of the EEG and the width of the line gave an indication of the signal’s variability. A schematic of an example of a CFM trace is shown in Figure 19.1(a). The CFM although useful did have its problems [Sechzer 1977]. When used to monitor depth of anaesthesia, the machine was shown to be unreliable, especially when using inhalational agents. The response is biphasic, as has already been discussed in chapter 18. Also burst suppression, as already discussed, is smoothed out by the action of the filtering in the CFM, so effectively the burst suppression can artificially elevate the readings producing a paradoxical rise in cerebral function [Sinha 2007] The machine was further developed into the Cerebral Function Analysing Monitor (CFAM)[Maynard 1984]. This machine produced two chart recorder outputs, as shown in Figure 19.1. There was a chart similar to the CFM trace, and also a chart that produced frequency domain data consisting of the EEG displayed as traditional EEG frequency bands.

Keywords:   Danmeter monitors, Fathom monitor, Narcotrend monitor, aepEX system, awareness indication, bicoherence, bispectral index (BIS) monitors, cerebral function monitor (CFM), compressed spectral array (CSA) monitor, density spectral array (DSA), depth of anaesthesia monitoring, patient state analyser (PSI), respiratory sinus arrhythmia based monitors

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .