Jump to ContentJump to Main Navigation
Crystallization of Nucleic Acids and ProteinsA Practical Approach$
Users without a subscription are not able to see the full content.

Arnaud Ducruix and Richard Giegé

Print publication date: 1999

Print ISBN-13: 9780199636792

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199636792.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 22 June 2021

Crystallization of Membrane Proteins

Crystallization of Membrane Proteins

Chapter:
9 (p.245) Crystallization of Membrane Proteins
Source:
Crystallization of Nucleic Acids and Proteins
Author(s):

F. Reiss-Husson

D. Picot

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199636792.003.0013

Crystallization of membrane proteins is one of the most recent developments in protein crystal growth; in 1980, for the first time, two membrane proteins were successfully crystallized, bacteriorhodopsin (1) and porin (2). Since then, a number of membrane proteins (about 30) yielded three-dimensional crystals. In several cases, the quality of the crystals was sufficient for X-ray diffraction studies. The first atomic structure of a membrane protein, a photosynthetic bacterial reaction centre, was described in 1985 (3), followed by the structure of about ten other membrane protein families. Crystallization of membrane proteins is now an actively growing field, and has been discussed in several recent reviews (4-8). The major difficulty in the study of membrane proteins, which for years hampered their crystallization, comes from their peculiar solubility properties. These originate from their tight association with other membrane components, particularly lipids. Indeed integral membrane proteins contain hydrophobic surface regions buried in the lipid bilayer core, as well as hydrophilic regions with charged or polar residues more or less exposed at the external faces of the membrane. Disruption of the bilayer for isolating a membrane protein can be done in various ways: extraction with organic solvents, use of chaotropic agents, or solubilization by a detergent. The last method is the most frequently used, since it maintains the biological activity of the protein if a suitable detergent is found. This chapter will be restricted to specific aspects of three-dimensional crystallizations done in micellar solutions of detergent. In some cases, it is possible to separate soluble domains from the membrane protein either by limited proteolysis or by genetic engineering. Such protein fragments can then be treated as soluble proteins and so will not be discussed further in this chapter. We refer to Chapter 12 and the review by Kühlbrandt (9) for the methodology of two-dimensional crystallization used for electron diffraction. The general principles discussed in this book for the crystallization of soluble biological macromolecules apply for membrane proteins; the protein solution must be brought to supersaturation by modifying its physical parameters (concentrations of constituents, ionic strength, and so on), so that nucleation may occur.

Keywords:   consolution boundary, critical micellar concentration, detergent, membrane protein crystallization, micellar solutions, polyethylene glycol (PEG)

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .