Jump to ContentJump to Main Navigation
Crystallization of Nucleic Acids and ProteinsA Practical Approach$
Users without a subscription are not able to see the full content.

Arnaud Ducruix and Richard Giegé

Print publication date: 1999

Print ISBN-13: 9780199636792

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199636792.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 24 June 2021

X-ray analysis

X-ray analysis

Chapter:
14 (p.391) X-ray analysis
Source:
Crystallization of Nucleic Acids and Proteins
Author(s):

L. Sawyer

M. A. Turner

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199636792.003.0018

This chapter covers the preliminary characterization of the crystals in order to determine if they are suitable for a full structure determination. Probably more frustrating than failure to produce crystals at all, is the growth of beautiful crystals which do not diffract, which have very large unit cell dimensions, or which decay very rapidly in the X-ray beam, though this last problem has been largely overcome by freezing the sample. It is impossible in one brief chapter to give more than a flavour of what the X-ray crystallographic technique entails and it is assumed that the protein chemist growing the crystals will have contact with a protein crystallographer, who will carry out the actual structure determination and in whose laboratory state-of-the-art facilities exist. However, preliminary characterization can often be carried out with little more than the equipment which is widely available in Chemistry and Physics Departments and so the crystal grower remote from a protein crystallography laboratory can monitor the success of their experiments. The reader should refer to the first edition for protocols useful for photographic characterization but such techniques are seldom used nowadays. It must be remembered, in any case, that X-rays are dangerous and the inexperienced should not try to X-ray protein crystals without help. It is necessary to provide an overview of X-ray crystallography, to put the preliminary characterization in context. For a general description of the technique the reader should refer to Glusker et al. (1) or Stout and Jensen (2). For protein crystallography in particular, the books by McRee (3) and Drenth (4) describe many of the advances since the seminal work of Blundell and Johnson (5). Amongst many excellent introductory articles, those by Bragg (6), published years ago, and Glusker (7) are particularly recommended. The scattering or diffraction of X-rays is an interference phenomenon and the interference between the X-rays scattered from the atoms in the structure produces significant changes in the observed diffraction in different directions. This variation in intensity with direction arises because the path differences taken by the scattered X-ray beams are of the same magnitude as the separation of the atoms in the molecule.

Keywords:   Bragg’s law, Ewald sphere, Laue technique, Matthew’s coefficient, X-ray crystallography, diffractometry, light microscopy, microscopy, polarized light, space group determination

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .