Jump to ContentJump to Main Navigation
Algorithmic Puzzles$
Users without a subscription are not able to see the full content.

Anany Levitin and Maria Levitin

Print publication date: 2011

Print ISBN-13: 9780199740444

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199740444.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 07 March 2021

Tutorials

Tutorials

Chapter:
1 Tutorials
Source:
Algorithmic Puzzles
Author(s):

Anany Levitin

Maria Levitin

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199740444.003.0006

The purpose of this tutorial is to briefly review a few general strategies for designing algorithms. While these strategies are not all applicable to every puzzle, taken collectively they provide a powerful tool kit. Not surprisingly, these strategies are also used for solving many problems in computer science. Therefore, learning to apply these strategies to puzzles can serve as an excellent introduction to this important field. But before we embark on reviewing major algorithm design strategies, we need to make an important comment on two types of algorithmic puzzles. Every algorithmic puzzle has an input. An input defines an instance of the puzzle. The instance can be either specific (e.g., find a false coin among eight coins with a balance) or general (e.g., find a false coin among n coins with a balance). When dealing with a specific instance of a puzzle, the solver has no obligations beyond solving the instance given. In fact, it might be the case that other instances of the puzzle do not have the same solution or even do not have solutions at all. On the other hand, specific numbers in a puzzle’s statement may be of no significance whatsoever. Then solving the general instance of the puzzle could be not only more satisfying but, on occasion, even easier. But whether a puzzle is presented by a specific instance or given in its most general form, it is almost always a good idea to solve a few small instances of it anyway. On rare occasions the solver might be misled by such investigation, but much more often it can provide useful insights into the puzzle given. Theoretically, many puzzles can be solved by exhaustive search—a problem-solving strategy that simply tries all possible candidate solutions until a solution to the problem is found. Little ingenuity is typically required in applying exhaustive search. Therefore, puzzles are rarely offered to a person (as opposed to a computer) in the expectation that a solution will be found by applying this strategy.

Keywords:   anagram, backtracking, chessboard problems, decimal numbers, exhaustive search, factorial, graph, incremental approach

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .