Jump to ContentJump to Main Navigation
The Assignment of the Absolute Configuration by NMR using Chiral Derivatizing AgentsA Practical Guide$
Users without a subscription are not able to see the full content.

Josi M. Seco, Emilio Quiqoa, and Ricardo Riguera

Print publication date: 2015

Print ISBN-13: 9780199996803

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780199996803.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 04 March 2021

The Theoretical Basis for Assignment by NMR

The Theoretical Basis for Assignment by NMR

1 The Theoretical Basis for Assignment by NMR
Title Pages

Josi M. Seco

Emilio Quiqoa

Ricardo Riguera

Oxford University Press

The nuclear magnetic resonance (NMR) spectra of two enantiomers are identical. Thus, the first step in using NMR to distinguish between two enantiomers should be to produce different spectra that eventually can be associated with their different stereochemistry (i.e., the assignment of their absolute configuration). Therefore, it is necessary to introduce a chiral reagent in the NMR media. There are two ways to address this problem. One is to use a chiral solvent, or a chiral agent, that combines with each enantiomer of the substrate to produce diastereomeric complexes/associations that lead to different spectra. This is the so-called chiral solvating agent (CSA) approach; it will not be further discussed here [33–34]. The second approach is to use a chiral auxiliary reagent [13–15] (i.e., a chiral derivatizing agent; CDA) that bonds to the substrate by a covalent linkage. Thus, in the most general method, the two enantiomers of the auxiliary CDA react separately with the substrate, giving two diastereomeric derivatives whose spectral differences carry information that can be associated with their stereochemistry. The CDA method that employs arylalcoxyacetic acids as auxiliaries is the most frequently used. It can be applied to a number of monofunctionals [14–15] (secondary alcohols [35–43], primary alcohols [44–46], aldehyde [47] and ketone cyanohydrins [48–49], thiols [50–51], primary amines [52–56], and carboxylic acids [57–58]), difunctional [13] (sec/sec-1,2-diols [59–61], sec/sec-1,2-amino alcohols [62], prim/sec-1,2-diols [63–65], prim/sec-1,2-aminoalcohols, and sec/prim-1,2-aminoalcohols [66–68]), and trifunctional (prim/sec/sec-1,2,3-triols [13, 69–70]) chiral compounds. Its scope and limitations are well established, and its theoretical foundations are well known, making it a reliable tool for configurational assignment. Figure 1.1 shows a summary of the steps to be followed for the assignment of absolute configuration of a chiral compound with just one asymmetric carbon and with substituents that, for simplicity, are assumed to resonate as singlets. Step 1 (Figure 1.1a): A substrate of unknown configuration (?) is separately derivatized with the two enantiomers of a chiral auxiliary reagent, (R)-Aux and (S)-Aux, producing two diastereomeric derivatives.

Keywords:   correlation model, esterification shifts, low temperature NMR, methyl, polyfunctional substrates, secondary alcohols

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .